Spatio-temporal dynamics of cortical drive to human subthalamic nucleus neurons in Parkinson's disease
نویسندگان
چکیده
Pathological synchronisation of beta frequency (12-35Hz) oscillations between the subthalamic nucleus (STN) and cerebral cortex is thought to contribute to motor impairment in Parkinson's disease (PD). For this cortico-subthalamic oscillatory drive to be mechanistically important, it must influence the firing of STN neurons and, consequently, their downstream targets. Here, we examined the dynamics of synchronisation between STN LFPs and units with multiple cortical areas, measured using frontal ECoG, midline EEG and lateral EEG, during rest and movement. STN neurons lagged cortical signals recorded over midline (over premotor cortices) and frontal (over prefrontal cortices) with stable time delays, consistent with strong corticosubthalamic drive, and many neurons maintained these dynamics during movement. In contrast, most STN neurons desynchronised from lateral EEG signals (over primary motor cortices) during movement and those that did not had altered phase relations to the cortical signals. The strength of synchronisation between STN units and midline EEG in the high beta range (25-35Hz) correlated positively with the severity of akinetic-rigid motor symptoms across patients. Together, these results suggest that sustained synchronisation of STN neurons to premotor-cortical beta oscillations play an important role in disrupting the normal coding of movement in PD.
منابع مشابه
Bilateral subthalamic nucleus stimulation improves frontal cortex function in Parkinson's disease. An electrophysiological study of the contingent negative variation.
Parkinson's disease involves impaired activation of frontal cortical areas, including the supplementary motor area and prefrontal cortex, resulting from impaired thalamocortical output of the basal ganglia. Electrophysiologically, such impaired cortical activation may be seen as a reduced amplitude of the contingent negative variation (CNV), a slow negative potential shift reflecting cognitive ...
متن کاملAnatomical situation of the subthalamic nucleus (STN) from midcommissural point (MCP) in Parkinson\'s disease patients underwent deep brain stimulation (DBS): an MRI targeting study
Abstract Introduction: It is demonstrated that the degree of clinical improvement in Parkinson's disease (PD) achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. In addition, individual variability in the situation of subthalamic nucleus (STN) is responsible for spatial inter-individual fluctuations of the real patient's target. Objecti...
متن کاملCharacterizing the spiking dynamics of subthalamic nucleus neurons in Parkinson's disease using generalized linear models
Accurately describing the spiking patterns of neurons in the subthalamic nucleus (STN) of patients suffering from Parkinson's disease (PD) is important for understanding the pathogenesis of the disease and for achieving the maximum therapeutic benefit from deep brain stimulation (DBS). We analyze the spiking activity of 24 subthalamic neurons recorded in Parkinson's patients during a directed h...
متن کاملThe effect of ibotonic acid lesion of the nucleus basalis of Meynert (NBM) on the response of cortical neurons in the rat barrel cortex
In the present study, the effect of NBM lesion on the temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats was studied. Nucleus basalis of Meynert (NBM) projects to widespread areas of the cortex and provides the major cholinergic input (80%) to the cerebral cortex. In this study we examined the effects of NBM lesion on the respon...
متن کاملThe effect of ibotonic acid lesion of the nucleus basalis of Meynert (NBM) on the response of cortical neurons in the rat barrel cortex
In the present study, the effect of NBM lesion on the temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats was studied. Nucleus basalis of Meynert (NBM) projects to widespread areas of the cortex and provides the major cholinergic input (80%) to the cerebral cortex. In this study we examined the effects of NBM lesion on the respon...
متن کامل